Brand Brand name of the company that manufactures the device. | ZTE |
Model Bitrecover pst converter wizard crack. Model name of the device. | Maven |
Model alias Аlternative names, under which the model is known. | Z812 |
Design
ZTE Z835 Maven 3 LTE is compatible with 6 out of 8 bands on T-Mobile (United States). Device model BBK Vivo Y73s 5G 2020 Dual SIM TD-LTE CN 128GB V2031A (BBK. ZTE USA manufacturers a variety of popular phones. Visit our website for more details!
Information about the dimensions and weight of the device, shown in different measurement units. Body materials, available colors, certifications.
Width Information about the width, i.e. the horizontal side of the device when it is used in its standard orientation. | 66 mm (millimeters) 6.6 cm (centimeters) 0.217 ft (feet) 2.598 in (inches) |
Height Information about the height, i.e. the vertical side of the device when it is used in its standard orientation. | 134.9 mm (millimeters) 13.49 cm (centimeters) 0.443 ft (feet) 5.311 in (inches) |
Thickness Information about the thickness/depth of the device in different measurement units. | 9.9 mm (millimeters) 0.99 cm (centimeters) 0.032 ft (feet) 0.39 in (inches) |
Weight Information about the weight of the device in different measurement units. | 133 g (grams) 0.29 lbs (pounds) 4.71 oz (ounces) |
Volume Estimated volume of the device, calculated from the dimensions provided by the manufacturer. Applies for devices in the form of a rectangular parallelepiped. | 88.14 cm³ (cubic centimeters) 5.35 in³ (cubic inches) |
Colors Information about the colors, in which the device is available in the market. | Blue |
Body materials Materials used in the fabrication of the device's body. | Plastic |
SIM card type Information about the type and size (form factor) of the SIM card used in the device. | Micro-SIM (3FF - third form factor, since 2003, 15.00 x 12.00 x 0.76 mm) |
Number of SIM cards Information about the number of SIM cards, supported by the device. | 1 |
Networks
A mobile (cellular) network is a radio system, which allows a large number of mobile devices to communicate with each other.
GSM GSM (Global System for Mobile Communications) was developed to replace the analog cellular network (1G), therefore it is referred to as a 2G mobile network. It has been improved with the addition of General Packet Radio Services (GPRS) and later via the Enhanced Data rates for GSM Evolution (EDGE) technology. | GSM 850 MHz GSM 900 MHz GSM 1800 MHz GSM 1900 MHz |
UMTS UMTS stands for Universal Mobile Telecommunications System. Based on the GSM standard, it is deemed as a 3G mobile network standard. It has been developed by the 3GPP and its major advantage is the provision of greater bandwidth and spectral efficiency, due to the W-CDMA technology. | UMTS 850 MHz UMTS 1900 MHz UMTS 2100 MHz |
LTE LTE is deemed to be the fourth generation (4G) of mobile communications technology. It has been developed by the 3GPP based on the GSM/EDGE and UMTS/HSPA technologies in order to increase the speed and capacity of wireless data networks. A further development of the technology is called LTE Advanced. | LTE 700 MHz Class 17 LTE 850 MHz LTE 1900 MHz LTE 2100 MHz |
Mobile network technologies There are several network technologies that enhance the performance of mobile networks mainly by increased data bandwidth. Information about the communication technologies supported by the device and their respective uplink and downlink bandwidth. | UMTS (384 kbit/s ) EDGE GPRS HSPA+ LTE Cat 4 (51.0 Mbit/s , 150.8 Mbit/s ) |
Operating system
Operating system is the system software, which manages and controls the functioning of the hardware components of the device.
Operating system (OS) Information about the operating system used by the device as well as its version. | Android 5.1 Lollipop |
SoC The SoC integrates different hardware components such as the CPU, GPU, memory, peripherals, interfaces, etc., as well as software for their functioning. | Qualcomm Snapdragon 410 MSM8916 |
Process technology Information about the process technology used in manufacturing the chip. The value in nanometers represents half the distance between elements that make up the CPU. | 28 nm (nanometers) |
CPU CPU is the Central Processing Unit or the processor of a mobile device. Its main function is to interpret and execute instructions contained in software applications. | ARM Cortex-A53 |
CPU bits The CPU bits are determined by the bit-size of the processor registers, address buses and data buses. 64-bit CPUs provide better performance than 32-bit ones, which on their part perform better than 16-bit processors. | 64 bit |
Instruction set The instruction set architecture (ISA) is a set of commands used by the software to manage the CPU's work. Information about the set of instructions the processor can execute. | ARMv8 |
Level 0 cache memory (L0) Some processors have a level 0 cache memory, which is accessed quicker than the L1, L2, L3, and so one cache memories. Besides achieving better performance, it also consumes less power. | 4 KB + 4 KB (kilobytes) |
Level 1 cache memory (L1) The cache memory is used by the processor in order to shorten the time needed to access data and instructions that a frequently used. The L1 (level 1) cache memory has a small volume, but operates faster than the RAM and the rest cache memory levels. If the processor does not find the data needed in L1, it continues to look for it in the L2 cache memory. In some processors the search in L1 and L2 is simultaneous. | 16 KB + 16 KB (kilobytes) |
Level 2 cache memory (L2) The L2 (level 2) cache memory is slower than L1, but has a larger capacity, instead, which allows it to cache more data. Just like L1, it is much faster than the system memory (RAM). If the CPU does not find the data needed in L2, it proceeds to look for them in the L3 cache memory (if there is such) or in the RAM. | 2048 KB (kilobytes) 2 MB (megabytes) |
CPU cores A CPU core is the processor unit, which executes software instructions. Presently, besides single-core processors, there are dual-core, quad-core, hexa-core and so on multi-core processors. They increase the performance of the device allowing the execution of multiple instructions in parallel. | 4 |
CPU frequency The frequency of the processor describes its clock rate in cycles per second. It is measured in Megahertz (MHz) or Gigahertz (GHz). | 1200 MHz (megahertz) |
GPU GPU is a graphical processing unit, which handles computation for 2D/3D graphics applications. In mobile devices GPU is usually utilized by games, UI, video playback, etc. GPU can also perform computation in applications traditionally handled by the CPU. | Qualcomm Adreno 306 |
GPU frequency The frequency is the clock rate of the graphic processor (GPU), which is measured in Megahertz (MHz) or Gigahertz (GHz). | 400 MHz (megahertz) |
RAM capacity RAM (Random-Access Memory) is used by the operating system and all installed applications. Data in the RAM is lost after the device is turned off or restarted. | 1 GB (gigabytes) |
RAM type Information about the type of RAM used by the device. | LPDDR3 |
RAM channels Information about the number of RAM channels integrated in the SoC. More channels mean higher data transfer rates. | Single channel |
RAM frequency RAM frequency relates directly to the rate of reading/writing from/in the RAM memory. | 533 MHz (megahertz) |
Storage
Every mobile device has a built-in storage (internal memory) with a fixed capacity.
Storage Information about the capacity of the built-in storage of the device. Sometimes one and the same model may is offered in variants with different internal storage capacity. | 8 GB (gigabytes) |
Types The various types of memory cards are characterized by different sizes and capacity. Information about the supported types of memory cards. | microSD microSDHC |
Display
The display of a mobile device is characterized by its technology, resolution, pixel density, diagonal length, color depth, etc.
Type/technology One of the main characteristics of the display is its type/technology, on which depends its performance. | TFT |
Diagonal size In mobile devices display size is represented by the length of its diagonal measured in inches. | 4.5 in (inches) 114.3 mm (millimeters) 11.43 cm (centimeters) |
Width Approximate width of the display | 2.2 in (inches) 56 mm (millimeters) 5.6 cm (centimeters) |
Height Approximate height of the display | 3.92 in (inches) 99.64 mm (millimeters) 9.96 cm (centimeters) |
Aspect ratio The ratio between the long and the short side of the display | 1.779:1 |
Resolution The display resolution shows the number of pixels on the horizontal and vertical side of the screen. The higher the resolution is, the greater the detail of the displayed content. | 480 x 854 pixels |
Pixel density Information about the number of pixels per centimeter (ppcm) or per inch (ppi) of the display. The higher the pixel density, the more detailed and clearer is the information displayed on the screen. | 218 ppi (pixels per inch) 85 ppcm (pixels per centimeter) |
Color depth The color depth of the display is also known as bit depth. It shows the number of bits used for the color components of one pixel. Information about the maximum number of colors the screen can display. | 24 bit 16777216 colors |
Display area The estimated percentage of the screen area from the device's front area. | 62.88 % (percent) |
Other features Information about other functions and features of the display. | Capacitive Multi-touch |
Sensors Sensors vary in type and purpose. They increase the overall functionality of the device, in which they are integrated. | Proximity Light Accelerometer |
Rear camera
The primary camera of the mobile device is usually placed on its back and can be combined with one or more additional cameras.
Sensor type Information about the sensor type of the camera. Some of the most widely used types of image sensors on mobile devices are CMOS, BSI, ISOCELL, etc. | CMOS (complementary metal-oxide semiconductor) |
Flash type The rear cameras of mobile devices use mainly a LED flash. It may arrive in a single, dual- or multi-light setup and in different arrangements. | LED |
Image resolution One of the main characteristics of the cameras is their image resolution. It states the number of pixels on the horizontal and vertical dimensions of the image, which can also be shown in megapixels that indicate the approximate number of pixels in millions. | 2592 x 1944 pixels 5.04 MP (megapixels) |
Video resolution Information about the maximum resolution at which the rear camera can shoot videos. | 1280 x 720 pixels 0.92 MP (megapixels) |
Video FPS Information about the maximum number of frames per second (fps) supported by the rear camera while recording video at the maximum resolution. Some of the main standard frame rates for recording and playing video are 24 fps, 25 fps, 30 fps, 60 fps. | 30 fps (frames per second) |
Features Information about additional software and hardware features of the rear camera which improve its overall performance. | Autofocus Continuous shooting Digital zoom Digital image stabilization Geotagging Panorama HDR Touch focus Face detection White balance settings ISO settings Exposure compensation Self-timer Scene mode |
Image resolution Information about the number of pixels on the horizontal and vertical dimensions of the photos taken by the front camera, indicated in megapixels as well. | 640 x 480 pixels 0.31 MP (megapixels) |
Video resolution Information about the maximum resolution of the videos shot by the front camera. | 640 x 480 pixels 0.31 MP (megapixels) |
Audio
Information about the type of speakers and the audio technologies supported by the device.
Speaker The loudspeaker is a device, which reproduces various sounds such as ring tones, alarms, music, voice calls, etc. Information about the type of speakers the device uses. | Loudspeaker Earpiece |
HAC (M4/T4) - Hearing Aid Compatibility |
Radio Information whether the device has an FM radio receiver or not. | Yes |
Tracking/Positioning
Information about the positioning and navigation technologies supported by the device.
Tracking/Positioning The tracking/positioning service is provided by various satellite navigation systems, which track the autonomous geo-spatial positioning of the device that supports them. The most common satellite navigation systems are the GPS and the GLONASS. There are also non-satellite technologies for locating mobile devices such as the Enhanced Observed Time Difference, Enhanced 911, GSM Cell ID. | GPS A-GPS |
Wi-Fi Wi-Fi communication between devices is realized via the IEEE 802.11 standards. Some devices have the possibility to serve as Wi-Fi Hotspots by providing internet access for other nearby devices. Wi-Fi Direct (Wi-Fi P2P) is another useful standard that allows devices to communicate with each other without the need for wireless access point (WAP). | 802.11b (IEEE 802.11b-1999) 802.11g (IEEE 802.11g-2003) 802.11n (IEEE 802.11n-2009) Wi-Fi Hotspot Wi-Fi Direct |
Bluetooth
Bluetooth is a standard for secure wireless data transfer between different types of devices over short distances.
Version The technology has several versions, which improve the connection speed, range, connectivity and discoverability of the devices. Information about the Bluetooth version of the device. | 4.0 |
Features Bluetooth uses various profiles and protocols related to faster exchange of data, energy saving, better device discoverability, etc. Some of those supported by the device are listed here. | A2DP (Advanced Audio Distribution Profile) |
Connector type There are several USB connector types: the Standard one, the Mini and Micro connectors, On-The-Go connectors, etc. Type of the USB connector used by the device. | Micro USB |
Version There are several versions of the Universal Serial Bus (USB) standard: USB 1.0 (1996), the USB 2.0 (2000), the USB 3.0 (2008), etc. With each following version the rate of data transfer is increased. | 2.0 |
Features Тhe USB interface in mobile devices may be used for different purposes such as battery charging, using the device as a mass storage, host, etc. | Charging Mass storage |
Headphone jack
The headphone jack is an audio phone connector, a.k.a. an audio jack. The most widely used one in mobile devices is the 3.5 mm headphone jack.
Headphone jack Information whether the device is equipped with a 3.5 mm audio jack. | Yes |
Connectivity Information about some of the most widely used connectivity technologies supported by the device. | Computer sync OTA sync Tethering |
Browser
A web browser is a software application for accessing, fetching, displaying and navigating through information on the World Wide Web.
Browser Information about some of the features and standards supported by the browser of the device. | HTML HTML5 CSS 3 |
Zte Maven 3 Sim Card
Audio file formats/codecs List of some of the most common audio file formats and codecs supported standardly by the device. | AAC (Advanced Audio Coding) AMR / AMR-NB / GSM-AMR (Adaptive Multi-Rate, .amr, .3ga) MIDI MP3 (MPEG-2 Audio Layer II, .mp3) OGG (.ogg, .ogv, .oga, .ogx, .spx, .opus) WMA (Windows Media Audio, .wma) WAV (Waveform Audio File Format, .wav, .wave) |
Video file formats/codecs
Mobile devices support various video file formats and codecs, which respectively store and code/decode digital video data.
Video file formats/codecs List of some of the most common video file formats and codecs supported standardly by the device. | 3GPP (3rd Generation Partnership Project, .3gp) AVI (Audio Video Interleaved, .avi) MP4 (MPEG-4 Part 14, .mp4, .m4a, .m4p, .m4b, .m4r, .m4v) WMV (Windows Media Video, .wmv) Xvid |
Capacity The capacity of a battery shows the maximum charge, which it can store, measured in mili-Ampere hours. | 2100 mAh (milliampere-hours) |
Type The battery type is determined by its structure and more specifically, by the chemicals used in it. There are different battery types and some of the most commonly used in mobile devices are the lithium-ion (Li-Ion) and the lithium-ion polymer battery (Li-Polymer). | Li-Ion |
2G talk time 2G talk time is the time period a battery charge will last, if one is constantly talking on the phone in a 2G cellular network. | 10 h (hours) 600 min (minutes) 0.4 days |
2G stand-by time 2G stand-by time is the longest time a battery charge will last, if the device is not used but is constantly connected to the 2G cellular network. | 360 h (hours) 21600 min (minutes) 15 days |
3G talk time 3G talk time is the time period a battery charge will last, if one is constantly talking on the phone in a 3G cellular network. | 10 h (hours) 600 min (minutes) 0.4 days |
3G stand-by time 3G stand-by time is the longest time a battery charge will last, if the device is not used but is constantly connected to the 3G mobile network. | 360 h (hours) 21600 min (minutes) 15 days |
Features Information about some additional features of the device's battery. | Non-removable |
Specific Absorption Rate (SAR)
The SAR rating shows the amount of electromagnetic radiation absorbed by the human body when using a mobile device, expressed in W/kg.
Head SAR (USA) This SAR rating shows the maximum level of exposure to electromagnetic radiation taken when the device is placed next to the ear. The applicable limit for the US is 1.6 W/kg per 1 g of tissue. In the US the FCC tests and sets the SAR limits for all mobile devices, which are controlled by the CTIA. | 0.77 W/kg (watts per kilogram) |
Body SAR (USA) The SAR body rating shows the maximum level of exposure to electromagnetic radiation when the device is positioned against the body at the hip. The highest SAR value of mobile devices allowed in the US is set to 1.6 W/kg per 1 g of tissue. It is specified by the FCC and the CTIA follows whether the mobile devices comply with this standard. | 1.35 W/kg (watts per kilogram) |
The delivery time for an unlock code for ZTE mobile phones starts from 1 to 5 working days.
The calculated average waiting time is 2 days 14 hours 51 minutes. (based on the last 50 orders)
What our customers say about unlocking
Initially I was given a 50 minute window to receive my code. It took about a day and a half but I did receive the code and it worked.
Christy - 2019-05-06 09:35:39
great service for heap thx
FERNANDO - 2018-11-14 20:47:35
Truly worth the money I couldn't get the code from at&t cuz my phone had to be over 6 months old, even if I could have I would have had to wait for a couple days. Sim-Unlock got me the code in just a couple hours Thank you
ALH907 - 2018-10-23 12:44:26
Very quick. Totally satisfied with the service. Will use again in the future.
Eddie - 2018-10-12 12:55:03
Excellent
mark - 2018-10-11 01:00:56
Unlocking instruction for ZTE Maven ?
Zte Maven 3 Price
Smartphone instruction
ZTE Maven is unlocked in 3 steps:
1. Start the ZTE Maven with an unaccepted simcard (unaccepted means from a different network than the one working in you ZTE)
2. Message to enter an unlock code should appear
3. Input the unlock code provided by sim-unlock.net
ZTE Maven is now unlocked.
Modem instruction
1. Insert an unaccepted simcard in your ZTE Maven (unaccepted means from a different network than the original one)
2. Connect the modem to the PC by USB
3. Install all new drivers for your device (please skip this step if the drivers are already installed)
4. Message to enter a network unlock code should appear
* the unlock message doesn't appear
Enter the following sequence in your webbrowser 192.168.0.1 or 192.168.1.1
- for login and password enter 'admin'
- check in which option a request for a network code appears,
5. Enter network unlock code provided by sim-unlock.net
Device is now capable of working in any network